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Abstract. We derive exact results for several thermodynamic quantities of the O(n) symmetric ϕ4 field
theory in the limit n→∞ in a finite d-dimensional hypercubic geometry with periodic boundary conditions.
Corresponding results are derived for an O(n) symmetric ϕ4 model on a finite d-dimensional lattice with
a finite-range interaction. The leading finite-size effects near Tc of the field-theoretic model are compared
with those of the lattice model. For 2 < d < 4, the finite-size scaling functions are verified to be universal.
For d > 4, significant lattice effects are found. Finite-size scaling in its usual simple form does not hold for
d > 4 but remains valid in a generalized form with two reference lengths. The finite-size scaling functions
of the ϕ4 field theory turn out to be nonuniversal whereas those of the ϕ4 lattice model are independent
of the nonuniversal model parameters. In particular, the field-theoretic model exhibits finite-size effects
whose leading exponents differ from those of the lattice model. The widely accepted lowest-mode approach
is shown to fail for both the field-theoretic and the lattice model above four dimensions.

PACS. 05.70.Jk Critical point phenomena – 64.60.i General studies of phase transitions –
75.40.Mg Numerical simulation studies

1 Introduction

Exactly solvable models play an important role in the sta-
tistical theory of phase transitions. Most interesting are
models that exhibit phase transitions of a non-mean-field
type. The spherical model [1–3] as well as O(n) sym-
metric models in the limit n → ∞ [4] are of particular
interest as they can be solved exactly for general dimen-
sions d and for a fully finite geometry [5–7]. This provides
the opportunity for examining fundamental properties of
general interest such as universality and finite-size scaling
[3,8–12] for d ≤ du and d > du where du is the upper
critical dimension. A particular advantage is that these
properties can be studied both in a field-theoretic and a
lattice version of the ϕ4 theory [13].

In a recent paper [13] we have presented the exact re-
sult for the order-parameter correlation function of the
O(n) symmetric ϕ4 field theory for a finite d-dimensional
cube with periodic boundary conditions in the limit
n→∞. Here we present the derivation of this result and
calculate other thermodynamic quantities in this limit.
For comparison, corresponding results will be derived for
an O(n) symmetric ϕ4 model on a finite d-dimensional
lattice.
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Our exact treatment of the field-theoretic ϕ4 model
in the large-n limit is performed at finite cutoff. Since no
perturbative approximations are involved (whose applica-
bility usually deteriorates near criticality) there is no need
for invoking the renormalization group (whose task would
be to map the perturbation results from the critical to
the non-critical region where perturbation theory is ap-
plicable). Thus our treatment remains conceptually sim-
ple and avoids unnecessary complications of renormalized
field theory.

Although the lattice models studied previously [5,6]
contain essentially the same features as the ϕ4 lattice
model studied in the present paper we consider the lat-
ter model as most appropriate for the purpose of a di-
rect comparison with the standard field-theoretic version
of the ϕ4 model. In particular, unlike the previous mod-
els [5,6], the ϕ4 lattice model enables us to keep track
of the different roles played by the four-point coupling
û0 with regard to three aspects for d > 4: (i) the “dan-
gerous irrelevant”character of û0 for T ≤ Tc [14–16], (ii)
non-universal cut-off effects that are tied to û0 and that
are important for d > 4, (iii) leading finite-size effects for
T > Tc proportional to û0 arising from the inhomoge-
neous order-parameter fluctuations. The aspects (ii) and
(iii) have not been discussed previously in the context of
finite-size theory. The last aspect (iii) will be important
in comparing our solution with that of reference [6].
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The discussion of our results will be focused on the
differences between the leading finite-size effects for the
field-theoretic and the lattice model. For 2 < d < 4,
the finite-size scaling functions of the susceptibility, the
order parameter and the specific heat are verified to be
universal, i.e., to be identical for the field-theoretic and
the lattice model and to be independent of the form of
the (finite-range) lattice interaction, apart from metric
factors. For d > 4 significant lattice effects are found.
Finite-size scaling in its usual simple form does not hold
for d > 4, as found previously [5], but remains valid in a
generalized form with two reference lengths. Here we find
the unexpected result that the corresponding finite-size
scaling functions have a different structure for the field-
theoretic and the lattice model. In particular we confirm
our recent result [13] that the exponents of the leading
finite-size effects on thermodynamic quantities of the field-
theoretic model differ from those of the lattice model. The
finite-size scaling functions for the field-theoretic model
are found to be nonuniversal for d > 4 whereas those of
the ϕ4 lattice model are independent of the nonuniversal
model parameters. Our scaling form for the susceptibility
of the ϕ4 lattice model for n→∞ disagrees with a previ-
ous non-scaling result for a modified version of the mean
spherical model [6,7] for d > 4.

Our results show that the lowest-mode approach [17]
fails in describing the leading finite-size effects above four
dimensions for the field-theoretic model [13]; for the lattice
model, it fails for T > Tc. Thus the widely accepted ar-
guments with regard to the irrelevance of inhomogeneous
fluctuations for d > 4 [17] are not generally valid. This
is of relevance to the interpretation of as yet unexplained
Monte-Carlo data of the five-dimensional Ising-model [18].

2 Finite-size effects in the ϕ4 field theory
for n→∞

We start from the standard Landau-Ginzburg-Wilson
Hamiltonian of the O(n) symmetric ϕ4 field theory

H =

∫
V

ddx[
1

2
r0ϕ

2+
1

2

n∑
a=1

(5ϕα)2+u0(ϕ2)2] (1)

for an n-component field ϕ(x) = (ϕ1, ϕ2, ..., ϕn) in a

finite volume V where ϕ2 stands for
n∑
α=1

ϕ2
α. For simplicity

we consider a d-dimensional cube, V = Ld, with periodic
boundary conditions,

ϕ(x) = L−d
∑
k

ϕke
ik·x. (2)

The summation runs over discrete k vectors with
components kj = 2πmj/L, mj = 0,±1,±2, ... , j =
1, 2, ... d, in the range −Λ ≤ kj < Λ with
a finite cutoff Λ. In terms of the Fourier

components

ϕk =

∫
V

ddxe−ik·xϕ(x) (3)

the Hamiltonian reads

H = L−d
∑
k

1

2
(r0 + k2)ϕkϕ−k

+ u0L
−3d

∑
kk′k′′

(ϕkϕk′)(ϕk′′ϕ−k−k′−k′′). (4)

We are interested in the large-n limit of the Gibbs free
energy per unit volume and per component

f = −
1

nLd
lnZ (5)

and of the correlation function

χ =
1

n

∫
V

ddx〈ϕ(x)ϕ(0)〉 (6)

where

〈ϕ(x)ϕ(0)〉 =
1

Z

∫
Dϕ ϕ(x)ϕ(0) exp(−H), (7)

with the partition function

Z =

∫
Dϕ exp(−H). (8)

As usual, the symbol
∫
Dϕ is an abbreviation for the

multiple integral over the real and imaginary parts of
(the finite number of) the Fourier components ϕk. For
T ≥ Tc, χ can be interpreted as the susceptibility (per
component) of the finite system.

It is well known that for the case of an infinite (V →
∞) system [19,20] a saddle point approach can be em-
ployed in the limit n → ∞. Here we apply this approach
to the finite system. We introduce an auxiliary field s(x)
(that also satisfies periodic boundary conditions) and rep-
resent the u0(ϕ2)2 term of H by a Gaussian integral over
s(x) according to the Hubbard-Stratonovitch transforma-
tion

exp

− ∫
V

ddxu0(ϕ2)2

 =

Ã

∫
Ds exp

−∫
V

ddx
(n

2
s2−i

√
2u0nsϕ

2
) . (9)

The constant Ã is finite and independent of ϕ(x). Then
the partition function becomes

Z = Ã

∫
Ds exp

−n
2

∫
V

ddxs2

 Z̃(s) (10)
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where

Z̃(s) =

∫
Dϕ exp

− ∫
V

ddx

n∑
α=1

(
1

2
r0ϕ

2
α

− i
√

2u0n s(x)ϕα(x)2 +
1

2
(5ϕα)2

)]
(11)

consists of decoupled integrations over the n components
ϕα of ϕ. Since each component contributes in the same
way we have

Z̃(s) =
[
Z̃1(s)

]n
= exp

[
−nLdf̃(s)

]
(12)

with

f̃(s) = −
1

Ld
ln

∫
Dϕ̃ exp

− ∫
V

ddx
(r0

2
ϕ̃2

− i
√

2u0n s(x)ϕ̃(x)2 +
1

2
(5ϕ̃)2

)]
(13)

where now ϕ̃(x) is a one-component field. The Gaussian
integration over ϕ̃ can be performed in the usual way
[19-21]. The result depends on the field s(x).

As suggested by the calculation in the bulk case
[19,20] the integration over s(x) in (10) is reduced, in the
limit n →∞ at fixed u0n, to a substitution of a uniform
(x-independent) saddle point value s(x) = s̄. This value
is determined by

s̄+
∂

∂s̄
f̃(s̄) = 0 (14)

where

f̃(s̄) = f̃0 +
1

2Ld

∑
k

ln(r0 − 2i
√

2u0n s̄+ k2), (15)

thus

s̄− i

√
2u0n

Ld

∑
k

1

r0 − 2i
√

2u0n s̄+ k2
= 0. (16)

Similarly the correlation function (6) is determined in this
limit by the exponential weight in (13) with s(x) = s̄, thus

χ−1 = r0 − 2i
√

2u0n s̄. (17)

This result is easily generalized to finite k,

χ(k) =
1

n

∫
ddxe−ik·x〈ϕ(x) ϕ(0)〉. (18)

In the large-n limit one obtains

χ(k)−1 = χ−1 + k2. (19)

Substituting (17) into (15, 16) we finally obtain the Gibbs

free energy f = f̄0 + 1
2 s̄

2 + f̃(s̄) of the finite system as

f = f0 −
(r0 − χ−1)2

16u0n
+

1

2
L−d

∑
k

ln(χ−1 + k2) (20)

where χ−1 is determined implicitly by [13]

χ−1 = r0 + 4u0n L
−d
∑
k

(χ−1 + k2)−1 (21)

and where f0 = f̄0 + f̃0 is an unimportant constant.
For T ≥ Tc, the bulk susceptibility follows from the

bulk limit of (21) as

χ−1
b = r0 + 4u0n

∫
k

(χ−1
b + k2)−1 (22)

where
∫
k

stands for (2π)−d
∫
ddk with a finite cutoff

|kj | ≤ Λ. The same equation determines the square of
the bulk correlation length ξ above Tc in the large-n limit
[19,21],

ξ2 = χb
[
∂χb(k)−1/∂k2

]
k=0

= χb. (23)

This implies the relation between the bulk critical expo-
nents γ = 2ν for general d > 2. At Tc (χ−1

b = 0) the bulk
critical value of r0 is obtained from (22) as

r0c = −4u0n

∫
k

k−2 (24)

which is finite for d > 2.
We also consider the quantity

M2 =
1

nL2d

〈∫
V

ddx ϕ(x)

2〉
(25)

which for L → ∞ becomes the square of the bulk order
parameter [22] divided by n. From (6) we have for finite
n and finite L

M2 = L−dχ. (26)

For the analysis of finite-size effects it will be important
to separate the k = 0 term from the sum in (21). Then
we obtain for the finite system in the large-n limit

χ−1 = r0 + 4u0nL
−dχ+ 4u0nL

−d
∑
k 6=0

(χ−1 + k2)−1.

(27)

In the bulk limit χ−1
b vanishes for T ≤ Tc. Thus, together

with (26), the bulk limit of (27) yields the square of the
bulk order parameter Mb (per component) for r0 < r0c
and for d > 2

lim
V→∞

lim
n→∞

M2 ≡M2
b =

r0c − r0
4u0n

(28)

in agreement with the known bulk result [19].
Equation (28) implies the bulk critical exponent β = 1/2
for general d > 2.
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Finally we calculate the specific heat per unit volume
and per component near Tc

C = −T 2
c

∂2

∂T 2
f = −a2

0

∂2

∂r2
0

f (29)

where the constant a0 > 0 is defined by

r0 − r0c = a0t, t = (T − Tc)/Tc. (30)

In the large-n limit we obtain from (20, 29) for the finite
system

C =
a2

0

8u0n

{
1+
[4u0n

Ld
χ2+

4u0n

Ld

∑
k 6=0

(χ−1+k2)−2
]−1
}−1

.

(31)

Here we have separated the k = 0 term from the sum. For
T ≥ Tc the bulk limit yields

C+
b =

a2
0

8u0n

{
1 +

[
4u0n

∫
k

(χ−1 + k2)−2
]−1
}−1

. (32)

Below Tc the k = 0 term of (31) together with χ−1
b = 0

implies the temperature independent bulk result

C−b =
a2

0

8u0n
· (33)

3 Finite-size effects in the ϕ4 lattice model
for n→∞

For comparison with the field-theoretic model we consider
a lattice Hamiltonian Ĥ(ϕi) for n-component vectors ϕi
with components ϕiα, −∞ ≤ ϕiα ≤ ∞, α = 1, 2, ..., n on
the lattice points xi of a simple-cubic lattice in a cube with
volume V = Ld and with periodic boundary conditions.
We assume [23]

Ĥ(ϕi)= ãd

{∑
i

[
r̂0

2
ϕ2
i +û0(ϕ2

i )
2

]
+
∑
i,j

1

2ã2
Jij(ϕi−ϕj)

2

}
(34)

where Jij is a pair interaction and ã is the lattice spac-
ing. The couplings Jij are dimensionless quantities. The
vectors ϕj have the Fourier representation

ϕj =
1

Ld

∑
k

eik·xj ϕ̂k. (35)

In terms of the Fourier components

ϕ̂k = ãd
∑
j

e−ik·xjϕj (36)

the Hamiltonian Ĥ reads

Ĥ = L−d
∑
k

1

2
[r̂0 + 2δJ(k)]ϕ̂k ϕ̂−k

+ û0L
−3d

∑
kk′k′′

(ϕ̂k ϕ̂k′)(ϕ̂k′′ ϕ̂−k−k′−k′′) (37)

where

δJ(k) =
1

ã2
[J(0)− J(k)] (38)

with

J(k) = (ã/L)d
∑
i,j

Jije
−ik·(xi−xj). (39)

The summation
∑

k runs over discrete k vectors with
components kj = 2πmj/L, mj = 0,±1,±2, · · · ,
j = 1, 2, · · · , d in the range −Λ ≡ −π/ã ≤ kj < π/ã ≡ Λ.
Comparison between (37) and (4) shows that the deriva-
tion of thermodynamic quantities for the finite lattice
model is parallel to that of Section 2.

We consider the following quantities for the finite lat-
tice: the Gibbs free energy per component and per unit
volume

f̂ = −
1

nLd
ln

∫
Dϕ̂ exp(−Ĥ), (40)

the susceptibility (per component) at finite wave number

χ̂(k) =
ã2d

nLd

∑
i,j

〈ϕi ϕj〉e
−ik·(xi−xj), (41)

the order parameter

M̂ =
ãd

n1/2Ld

〈(∑
i

ϕi

)2〉1/2

= L−d/2χ̂1/2, (42)

where χ̂ ≡ χ̂(0) and the specific heat

Ĉ = −T 2
c

∂2

∂T 2
f̂ = −â2

0

∂2

∂r̂2
0

f̂ (43)

where

r̂0 − r̂0c = â0t, t = (T − Tc)/Tc. (44)

In the limit n→∞ at fixed û0n the results for the quan-
tities f̂ , χ̂, M̂, Ĉ, and r̂0c can be obtained from those of
Section 2 simply by replacing r0 → r̂0, u0 → û0, and
k2 → 2δJ(k). Thus

f̂= f̂0−
(r̂0−χ̂

−1)2

16û0n
+

1

2
L−d

∑
k

ln
[
χ̂−1+2δJ(k)

]
, (45)

χ̂−1 = r̂0+4û0nL
−dχ̂+4û0nL

−d
∑
k6=0

[
χ̂−1+2δJ(k)

]−1
, (46)

Ĉ=
â2

0

8û0n

{
1+
(4û0n

Ld
χ̂2+

4û0n

Ld

∑
k6=0

[χ̂−1+2δJ(k)]−2
)−1}−1

,

(47)

r̂0c= −4û0n

∫
k

[
2δJ(k)

]−2
. (48)
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The discussion of the bulk limits of these equations is
parallel to that in Section 2. We assume a finite-range
pair interaction such that its Fourier transform (39) has
the small k behavior

δJ(k) =
1

2
J0k

2 +O(k2
i k

2
j ) (49)

with

J0 =
1

d
(ã/L)d

∑
i,j

(
Jij/ã

2
)

(xi − xj)
2
. (50)

This implies that the bulk susceptibility above Tc

χ̂b(k)−1 = χ̂−1
b + 2δJ(k) (51)

determines the square of the bulk correlation length of the
lattice model above Tc

ξ̂2 = χ̂b
[
∂χ̂b(k)−1/∂k2

]
k=0

= J0 χ̂b. (52)

4 Universal finite-size scaling functions
for 2 < d < 4

In the following we derive the asymptotic (large L, small

|t|) finite-size scaling functions of χ,M,C and of χ̂, M̂ , and

Ĉ in the large-n limit for 2 < d < 4. The scaling functions
for the field-theoretic model (1) and the lattice model (34)
will be verified to have the same universal form, apart from
nonuniversal metric factors [24]. These factors turn out to
depend on the strength J0 of the pair interaction (50)
and on the model parameters a0, u0 and â0, û0 but to be
independent of the cutoff Λ and of the lattice spacing ã.

4.1 Field-theoretic model

The first step is to rewrite χ,M and C as functions of
r0−r0c, u0n and Λ. The second step is to perform a decom-
position into bulk and finite-size contributions. The third
step is to take the limit of large L and small |r0−r0c| at fi-
nite Λ. The resulting finite-size scaling functions will turn
out to be independent of Λ for 2 < d < 4. Alternatively,
and more conveniently, we perform the third step by first
letting Λ → ∞ at fixed r0 − r0c = a0t. The asymptotic
finite-size scaling functions are then obtained by dropping
subleading terms in the limit of large L and large χ at
fixed χ−1L2.

Starting from (27), the first and second steps yield an
implicit equation for χ(r0 − r0c, u0n,L,Λ, d)−1,

χ−1 = r0 − r0c − ∆̃1

+ 4u0n
{
χL−d − χ−1

∫
k

[
k2(χ−1 + k2)

]−1
}

(53)

where

∆̃1 = 4u0n

∫
k

(χ−1 + k2)−1 − L−d
∑
k 6=0

(χ−1 + k2)−1

 .
(54)

At fixed r0 − r0c, the limit Λ → ∞ of (53) exists for
2 < d < 4. Then we have

lim
Λ→∞

∫
k

[k2(χ−1 + k2)]−1 = Ad χ
ε/2 ε−1 (55)

with ε = 4− d ,

Ad = Γ (3− d/2)22−dπ−d/2(d− 2)−1 (56)

with A3 = (4π)−1, and

lim
Λ→∞

∆̃1 = 4u0nL
2−d I1(χ−1L2), (57)

I1(x) = −(2π)−2

∞∫
0

dy e−(xy/4π2)
[
K(y)d−(π/y)d/2 − 1

]
,

(58)

K(y) =
∞∑

m=−∞

e−ym
2

. (59)

Multiplication of (53) by Ld−2 yields for Λ→∞ (at fixed
a0t)(
χ−1L2

)
Ld−4 = a0tL

d−2

+ 4u0n[χL−2 − Adε
−1
(
χL−2

)(2−d)/2
− I1

(
χ−1L2

)
].

(60)

Taking the limit of large L and large χ at fixed χ−1L2

eliminates the non-scaling term on the l.h.s. of (60) and
determines the dimensionless asymptotic scaling function
Pχ
(
t(L/ξ0)1/ν

)
,

χ(t, L) = Lγ/ν Pχ

(
t(L/ξ0)1/ν

)
, (61)

according to

0 = t(L/ξ0)1/ν − (Pχ)
−1/γ

+ εA−1
d

[
Pχ − I1(P−1

χ )
]

(62)

with the critical exponents ν = (d−2)−1 and γ = 2/(d−2)
for 2 < d < 4 and with the reference length

ξ0 =

(
4u0nAd

εa0

)1/(d−2)

. (63)

Using (23) it is straightforward to show by means of (61,
62) that ξ0 is the amplitude of the bulk correlation length
ξ ∼ ξ0t

−ν above Tc. We see that the nonuniversal model
parameters a0 und u0 enter only via ξ0.
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The dimensionless finite-size scaling function
PM (t(L/ξ0)1/ν) of

M = Lβ/ν PM (t(L/ξ0)1/ν) (64)

is immediately obtained from (26, 61) as

PM

(
t(L/ξ0)1/ν

)
=
[
Pχ

(
t(L/ξ0)1/ν

)]1/2
. (65)

Similar calculations for the specific heat yield, starting
from (31),

C =
a2

0

8u0n
{1 + [4u0nL

−d χ2 − ∆̃2

+ 4u0n

∫
k

(χ−1 + k2)−2
]−1}−1

, (66)

∆̃2 = 4u0n
[ ∫

k

(χ−1 + k2)−2 − L−d
∑
k 6=0

(χ−1 + k2)−2
]
,

(67)

which determines C(r0 − r0c, u0n,L,Λ, d). In the limit
Λ→∞ at fixed r0 − r0c we obtain for 0 < ε < 2

lim
Λ→∞

∫
k

(χ−1 + k2)−2 = Ad χ
ε/2 ε−1(1− ε/2), (68)

lim
Λ→∞

∆̃2 = 4u0nL
4−d I2(χ−1L2), (69)

I2(x)=−(2π)−4

∞∫
0

dy y e−(xy/4π2)
[
K(y)d−(π/y)d/2 − 1

]
,

(70)

C =
a2

0

8u0n

{
1 + (4u0n)−1Ld−4

×

[
P 2
χ +

Ad

ε

(
1−

ε

2

)
P ε/2χ − I2

(
P−1
χ

)]−1
}−1

. (71)

In the limit of large L at fixed χ−1L2 the resulting finite-
size scaling function PC(t(L/ξ0)1/ν) of the specific heat

C(t, L)− C(0,∞) = Lα/νPC

(
t(L/ξ0)1/ν

)
(72)

can be expressed in terms of Pχ
(
t(L/ξ0)1/ν

)
according to

PC(t(L/ξ0)1/ν)=−AC [P 2
χ +

Ad

ε
(1−

ε

2
)P ε/2χ −I2(P−1

χ )]−1,

(73)

with the nonuniversal factor

AC =
a2

0

32(u0n)2
(74)

and the critical exponent α = (d−4)/(d−2) for 2 < d < 4.

4.2 Lattice model

For the case of the lattice Hamiltonian the scaling limit of
largeL and small |t| will be performed at fixed lattice spac-
ing ã. For the finite-range pair interaction (39) the form
of J(k) at finite k does not affect the asymptotic scaling

region for 2 < d < 4. The finite-size scaling functions P̂χ,

P̂M and P̂C are modified (compared to Pχ, PM , PC) only
through nonuniversal metric factors that are independent
of Λ and ã.

For χ̂, these factors arise in the limit of large χ̂ from∫
k

{
2δJ(k)

[
χ̂−1 + 2δJ(k)

]}−1

∼ J−d/20 Ad χ̂
ε/2 ε−1

(75)

and, in the limit of large χ̂ and large L at fixed χ̂−1L2,
from∫

k

[
χ̂−1 + 2δJ(k)

]−1
− L−d

∑
k 6=0

[
χ̂−1 + 2δJ(k)

]−1

∼ J−1
0 L2−d I1

(
J−1

0 χ̂−1L2
)
. (76)

For P̂χ = χ̂L−γ/ν this leads to

0= t(L/ξ̂0)1/ν−(J0P̂χ)−1/γ+εA−1
d [J0P̂χ−I1(J−1

0 P̂−1
χ )]

(77)

where now ξ̂0 is the reference length of the lattice model,

ξ̂0 =

[
4û0nAd

εâ0J0

]1/(d−2)

· (78)

Using (52) it is straightforward to show by means of (77)

that ξ̂0 is indeed the amplitude of the bulk correlation
length ξ̂ ∼ ξ̂0t

−ν of the lattice model above Tc. Thus we
define P̂χ with the appropriate scaling variable as

χ̂(t, L) = Lγ/νP̂χ

(
t(L/ξ̂0)1/ν

)
. (79)

Comparison of (77) with (62) implies the relation

J0 P̂χ

(
t(L/ξ̂0)1/ν

)
= Pχ

(
t(L/ξ̂0)1/ν

)
= Pχ

(
(ξ0/ξ̂0)1/νt(L/ξ0)1/ν

)
, (80)

i.e., P̂χ and Pχ are the same universal functions up to

factors J0 and (ξ0/ξ̂0)1/ν . These factors are independent

of Λ and ã. Similarly we obtain for M̂ = Lβ/νP̂M the
relation P̂M = (P̂χ)1/2 and

J
1/2
0 P̂M

(
t(L/ξ̂0)1/ν

)
= PM

(
t(L/ξ̂0)1/ν

)
= PM

(
(ξ0/ξ̂0)1/νt(L/ξ0)1/ν

)
.

(81)
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Finally we present the asymptotic scaling function P̂C of
the specific heat

Ĉ(t, L)− Ĉ(0,∞) = Lα/νP̂C

(
t(L/ξ̂0)1/ν

)
(82)

of the lattice model. Like PC , P̂C can be expressed in terms

of P̂χ
(
t(L/ξ̂0)1/ν

)
according to

P̂C

(
t(L/ξ̂0)1/ν

)
= −ÂC

[
(J0P̂χ)2+

Ad

ε
(1−

ε

2
)(J0P̂χ)ε/2

−I2
(
J−1

0 P̂−1
χ

)]−1

(83)

with the nonuniversal factor

ÂC =
(â0J0)2

32(û0n)2
· (84)

Comparison of equations (83, 84) with equations (73, 74,
80) implies the relation

AC

ÂC
P̂C

(
t(L/ξ̂0)1/ν

)
= PC

(
t(L/ξ̂0)

)
= PC

(
(ξ0/ξ̂0)1/νt(L/ξ0)1/ν

)
.

(85)

In summary, the expected universality of all finite-size
scaling functions is confirmed for 2 < d < 4, up to the
factors AC/ÂC and J0 which are independent of Λ and ã.
In all cases the amplitude of the bulk correlation length
appears as the natural reference length, and the same fac-
tor (ξ0/ξ̂0)1/ν appears in the scaling argument of both Pχ,
equation (80), and PC , equation (85). The issue of univer-
sality and metric factors [3,24] will be further discussed
elsewhere [25].

As a general remark we note that for the finite system
the critical exponents appearing in the finite-size scaling
relations are meaningful in the entire range of validity of
these scaling forms, i.e., also below Tc, even if in the bulk
limit below Tc the notion of α and γ may be considered
as problematic for n→∞ (since C−b is temperature inde-
pendent and no finite χb exists below Tc).

5 Finite-size and lattice effects for d > 4

As pointed out recently [13] there exist significant differ-
ences between the leading finite-size effects on the field-
theoretic version χ and on the lattice version χ̂ of the
susceptibility at Tc for d > 4. In the following we further
extend this analysis. Throughout this section it will be
necessary to keep Λ finite.

5.1 Susceptibility and order parameter for d > 4

First we consider the field-theoretic model with H,
equation (1). Adding and subtracting 4u0n L

−d
∑

k 6=0 k−2

in (27) and rewriting r0 = r0 − r0c − 4u0n
∫
k k−2 yields

χ−1 = δr0 + 4u0nL
−dχ− χ−1S (86)

or

χ−1 =
δr0 +

√
(δr0)2 + 16u0nL−d(1 + S)

2(1 + S)
(87)

where

δr0 = r0 − r0c −∆, (88)

S = 4u0nL
−d
∑
k 6=0

[
k2(χ−1 + k2)

]−1
, (89)

∆ = 4u0n

∫
k

k−2 − L−d
∑
k 6=0

k−2

 . (90)

For the lattice Hamiltonian Ĥ the corresponding result is

χ̂−1 =
δr̂0 +

√
(δr̂0)2 + 16û0nL−d(1 + Ŝ)

2(1 + Ŝ)
(91)

where

δr̂0 = r̂0 − r̂0c − ∆̂, (92)

Ŝ = 4û0nL
−d
∑
k 6=0

{
2 δJ(k)

[
χ̂−1 + 2 δJ(k)

]}−1
, (93)

∆̂ = 4û0n

∫
k

1

2 δJ(k)
− L−d

∑
k 6=0

1

2 δJ(k)

 · (94)

The lowest-mode approach [17] neglects the contributions
of the k 6= 0 modes, i.e., it corresponds to the approxi-
mation S = 0,∆ = 0, and Ŝ = 0, ∆̂ = 0. The large-L
behavior of ∆ for d > 2 is nontrivial,

∆∼4u0nΛ
d−2
[
a1(d)(ΛL)−2+a2(d)(ΛL)2−d+O((ΛL)−4)

]
(95)

(see Appendix). The corresponding quantity of the lattice
model has the simpler large-L behavior for d > 2

∆̂ ∼ 4û0nJ
−1
0 a2(d)L2−d, (96)

apart from more rapidly vanishing terms. The coefficients
ai(d) > 0 are given in Appendix. We have confirmed the
results (95, 96) by numerical evaluation of equations (90,
94) [13].

We point out that the difference between ∆ and ∆̂
has crucial consequences for the issue of universality and
finite-size scaling for d > 4 to be discussed in the sub-
sequent section. Most important is the difference be-
tween ∆ and ∆̂ with regard to the large L behavior.
Equations (95, 96) imply the large-L behavior at Tc for
d > 4

χc ∼
Ld∆

4u0n
∼ a1(d)Λd−4Ld−2 (97)

and

χ̂c ∼ (4û0n)−1/2(1 + Ŝbc)
1/2Ld/2 (98)
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with Ŝbc = 4û0n
∫
k
[2 δJ(k)]−2 whereas the lowest-mode

approach yields

χ0c = (4u0n)−1/2Ld/2 (99)

and

χ̂0c = (4û0n)−1/2Ld/2. (100)

Some of the implications of these results have been dis-
cussed in reference [13].

Here we proceed to the case T > Tc. For small but
finite t > 0 we obtain the bulk and the leading finite-size
terms for d > 4 in the large-L limit

χ−1 = (1 + Sbc)
−1
(
a0t− 4u0nΛ

d−4a1(d) L−2
)

(101)

χ̂−1 = (1 + Ŝbc)
−1
(
â0t− 4û0nJ

−1
0 [I1(x̂)− x̂−1] L2−d

)
(102)

with Sbc = 4u0n
∫
k k−4 and x̂ = tL2ξ̂−2

0 . We see that the
leading finite-size terms above Tc have different power laws
for the field-theoretic and the lattice model. For compar-
ison we consider the corresponding results of the lowest-
mode approach for t > 0 and large L,

χ−1
0 = a0t+ 4u0n L

−d/(a0t), (103)

χ̂−1
0 = â0t+ 4û0n L

−d/(â0t). (104)

We conclude that the lowest-mode approach fails above Tc
with regard to the leading finite-size terms for both the
field-theoretic and the lattice model.

On the basis of the relations (25, 42), analogous results
are obtained for the order parameter for d > 4, e.g., at Tc
for the field-theoretic model

M2
c = L−dχc ∼ a1(d)Λd−4L−2 (105)

and for the lattice model

M̂2
c = L−dχ̂c ∼ (4û0n)−1/2(1 + Ŝbc)

1/2L−d/2, (106)

whereas the lowest-mode approach yields

M2
0c = (4u0n)−1/2L−d/2 (107)

and

M̂2
0c = (4û0n)−1/2L−d/2. (108)

We note that the previous arguments [17] in support of the
asymptotic correctness of the lowest-mode approach for
d > 4 are not sufficiently compelling and complete since
they are focused only on the rescaling of individual terms
at lowest non-zero k (see Eq. (3.17b) of Ref. [17] and the
preceding equation) without calculating the sum of these
terms. Also in the recent more detailed exposition [19] no
argument is presented that indicates why it should be un-
necessary to carry out the summation in equation (36.33)
of reference [19] in addition to the rescaling of individual
terms. We claim that this summation is crucial, for large
L, as demonstrated in Appendix for the quantity ∆.

5.2 Specific heat at Tc for d > 4

The expressions for the specific heat of the finite system
at Tc are obtained from (31, 47) as

Cc(L) =
a2

0

8u0n

{
1 +

[4u0n

Ld
χ2
c

+
4u0n

Ld

∑
k 6=0

(χ−1
c +k2)−2

]−1}−1

(109)

and

Ĉc(L) =
â2

0

8û0n

{
1 +

(4û0n

Ld
χ̂2
c

+
4û0n

Ld

∑
k 6=0

[
χ̂−1
c +2δJ(k)

]−2
)−1}−1

, (110)

for the field-theoretic and the lattice model, respec-
tively. In the bulk limit the sums L−d

∑
k 6= 0 in both

(109, 110) become finite integrals for d > 4. The basic dif-

ference between Cc(L) and Ĉc(L) for large L arises from
the k = 0 terms 4u0n L−dχ2

c and 4û0n L−dχ̂2
c . Accord-

ing to (97, 98), the field-theoretic term proportional to
L−dχ2

c diverges as Ld−4 whereas the lattice term propor-
tional to L−dχ̂2

c remains finite for L → ∞. This implies
different bulk values and different finite-size effects at Tc.
The finite bulk values are for d > 4

lim
L→∞

Cc(L) ≡ Cbc =
a2

0

8u0n
(111)

and

lim
L→∞

Ĉc(L) ≡ Ĉbc =
â2

0

8û0n

{
1 +

[
1 + 2Ŝbc

]−1}−1

. (112)

We note that lim
t→+0

[
lim
L→∞

Ĉ(t, L)
]
6= Ĉbc . The leading

finite-size effects at Tc are for d > 4

Cbc − Cc(L) ∼ Cbc
[
4u0n Λ

d−4a1(d)2
]−1

(ΛL)4−d (113)

and

Ĉbc − Ĉc(L) ∼ −Ĉbc
(4û0n ã

4−d)1/2 a2(d)

4J0 (1 + Ŝbc)
3/2

(L/ã)(4−d)/2.

(114)

We see that the field-theoretic Hamiltonian H and the
lattice Hamiltonian Ĥ yield significantly different finite-
size effects on the specific heat at Tc for d > 4. A more
complete study of C and Ĉ is given elsewhere [25].

We compare these results with the specific heat C0 and
Ĉ0 obtained within the lowest-mode approach. Neglecting
the k 6= 0 terms in (31, 47) we obtain the lowest-mode
results at Tc for the finite system

C0c =
a2

0

8u0n

{
1 +

Ld

4u0n
χ−2

0c

}−1

(115)
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and

Ĉ0c =
â2

0

8û0n

{
1 +

Ld

4û0n
χ̂−2

0c

}−1

(116)

for d > 4. Together with (99, 100) this yields the L-
independent constants for the finite systems

C0c =
a2

0

16u0n
, Ĉ0c =

â2
0

16û0n
· (117)

Thus the lowest-mode approach does not capture any
finite-size effect on the specific heat at Tc for d > 4, even
for small systems where finite-size effects become large.
We do not consider this to be an acceptable approxima-
tion in view of the leading finite-size effects determined by
the results in (113, 114).

6 Finite-size scaling functions for d > 4

In the following we shall show that for large L and small
|t| the susceptibilities χ and χ̂ of both the ϕ4 field theory
and the ϕ4 lattice model do not have the usual universal
scaling forms of (61, 79) for d > 4. This was to be expected
from previous work [5,6]. As a new result we find that, in
the large-n limit at fixed u0n and û0n, χ and χ̂ attain the
generalized finite-size scaling forms

χ = Lγ/νPχ

(
t(L/ξ0)1/ν , c0u0nL

4−d
)

(118)

and

χ̂ = Lγ/νP̂χ

(
t(L/ξ̂0)1/ν , ĉ0û0nL

4−d
)

(119)

for d > 4 with a nonuniversal scaling function Pχ. Here

we shall determine the exact scaling functions Pχ and P̂χ
which turn out to differ significantly from each other, not
only through metric factors. The structure of (118) was
proposed earlier [15] for d > 4 on the basis of renormali-
zation-group arguments (see Eq. (2.52) of Ref. [10]) but
no specific form for the scaling function was given. In par-
ticular, the possibility of different structures of the scaling
functions Pχ and P̂χ was not anticipated. In fact, it was
suggested [10] in the context of the field-theoretic Hamil-
tonian (1) that a universal scaling function exists for d > 4
(see Eq. (2.57) of Ref. [10]).

For the case of the susceptibility of a modified version
of the mean spherical model on a lattice [6], we have found
that the result presented in equation (114) of reference [6]
and equation (47) of reference [7] disagrees with the scal-
ing structure of (119) as will be shown in Section 6.3 be-
low. This disagreement has previously not been noticed in
the literature.

6.1 Field-theoretic model

For large L and small |t| we obtain the asymptotic form
of χ−1 from (87, 95) for d > 4 as

χ−1 = L−2L
2δr +

√
(L2δr)2 + 16u0nL4−d(1 + Sbc)

2(1 + Sbc)
(120)

where

Sbc = 4u0n

∫
k

k−4 = 4ūncd (121)

is a dimensionless constant and

L2δr = a0tL
2 − 4ūn a1(d) (122)

contains the temperature dependence. In Sbc and L2δr the
coupling u0 appears in combination with the factor Λd−4

which leads in a natural way to the dimensionless cutoff-
dependent parameter

ū = u0Λ
d−4. (123)

This is not the case for the coupling u0 appearing in the
k = 0 term 16u0nL

4−d in (120) which requires to combine
this u0 with the factor L4−d. The coupling u0L

4−d plays
a role that differs fundamentally from that of ū in (121,
122). This is seen from the singular dependence of χ on
this u0

χ = L2 |δr|

4u0nL4−d

[
1 +O(u0nL

4−d)
]
, (124)

as obtained from (120) in the large L limit at finite nega-
tive δr < 0. Clearly this large-L limit reveals this u0 to be
the “dangerous irrelevant variable” anticipated earlier [14]
which for the finite system ought to be combined with the
factor L4−d to yield the appropriate dimensionless scaling
variable u0L

4−d in the finite-size scaling theory [15]. This
implies that (120) can be written in the finite-size scaling
form

χ = Lγ/ν Pχ

(
t(L/ξ0)1/ν , (L/l0)4−d

)
(125)

for d > 4 with γ = 1, ν = 1/2 and with the scaling function

Pχ(x, y) = 2
{
δ(x) +

√
[δ(x)]2 + 4y

}−1

, (126)

δ(x) = x− (1 + Sbc)
−14ūna1(d). (127)

Here we have introduced the reference length

l0 =
( 4u0n

1 + Sbc

)1/(d−4)

(128)

which becomes relevant above four dimensions. In addition
we have used the amplitude

ξ0 =
[
(1 + Sbc)/a0

]1/2
(129)
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of the bulk correlation length ξ ∼ ξ0t
−ν above Tc which

follows from (120, 23) for d > 4. Similarly, the order pa-
rameter has a scaling form for d > 4

M = L[(γ/ν)−d]/2 PM

(
t(L/ξ0)1/ν , (L/l0)4−d

)
(130)

with

PM (x, y) =
[
Pχ(x, y)

]1/2
(131)

because of (26).
One basic difference between the finite-size scaling

functions for 2 < d < 4 and for d > 4 is that the for-
mer are universal whereas the latter are nonuniversal. This
nonuniversal structure arises from the L-independent di-
mensionless parameter ū, equation (123). This parameter
causes a non-universal cutoff-dependent shift of the scal-
ing variable x in the last term of δ(x), equation (127).
Although the parameter ū does not enter Pχ in a singular
way there is no smallness argument that would permit one
to expand Pχ(x, y) with respect to ū and to retain only
the part of Pχ at ū = 0. In the terminology of the renor-
malization group (RG), this parameter ū does not have a
RG flow and does not approach a “Gaussian fixed point”,
unlike the dangerous irrelevant coupling u0L

4−d. Thus the
asymptotic (large L, small |t|) scaling function Pχ(x, y) is
truely nonuniversal for d > 4.

In retrospect we now see that χc and M2
c in (97, 105)

have not yet been represented in a scaling form in the
sense of (118, 131). Application of the scaling functions
Pχ, equation (126), and PM , equation (131), to the case
x = 0 reproduces the leading power laws of χc and M2

c in
the appropriate scaling forms

χc ∼
a1(d)ū

u0L4−d
Lγ/ν (132)

and

M2
c ∼

a1(d)ū

u0L4−d
L(γ/ν)−d. (133)

6.2 Lattice model

From the lattice version of (53, 54) and from (76) we get
the asymptotic (large L, small |t|) form of χ̂−1 for d > 4
as

χ̂−1 = L−2
L2δr̂ +

√
(L2δr̂)2 + 16û0nL4−d(1 + Ŝbc)

2(1 + Ŝbc)
(134)

where

Ŝbc = 4û0n

∫
k

[2δJ(k)]
−2

= 4¯̂unĉ (135)

is a dimensionless constant and

L2δr̂ = â0tL
2 − 4û0nL

4−dJ−1
0 I1(J−1

0 χ̂−1L2) (136)

contains the temperature dependence. We note that now
the cutoff (lattice-spacing) dependent dimensionless pa-
rameter

¯̂u = û0ã
4−d (137)

enters only Ŝbc , equation (135), but not δr̂. In δr̂ the same
combination û0nL

4−d appears as in the zero-mode term
16û0nL

4−d in (134). It is only the latter which is of a
“dangerous irrelevant” character. The 4û0nL

4−d term in
(136) originates from the k 6= 0 modes and enters χ̂−1

in a non-singular way. At first sight, since it vanishes in
the large-L limit for d > 4, this term appears to be a
negligible correction that should not be retained in the
asymptotic expression for χ̂−1. This conclusion is, how-
ever, incorrect because this term contributes to the lead-
ing finite-size term for T > Tc as presented in (102) of the
preceding Section. If it were neglected the “dangerous”
term 16û0nL

4−d – which must of course be retained in
any case – would become the leading finite-size term above
Tc (corresponding to the lowest-mode approximation).
This would simply be incorrect. Thus the second term
on the r.h.s. of (136) must be included as a generic part

of the asymptotic scaling function P̂χ. From (134–137) we
then obtain

χ̂ = Lγ/ν P̂χ

(
t(L/ξ̂0)1/ν , (L/l̂0)4−d

)
, (138)

P̂χ(x̂, ŷ) = 2J−1
0

{
δ̂(x̂, ŷ) +

√[
δ̂(x̂, ŷ)

]2
+ 4ŷ

}−1

,

(139)

δ̂(x̂, ŷ) = x̂− I1(J−1
0 P̂−1

χ )ŷ. (140)

Here we have introduced the reference length of the lattice
model

l̂0 =
[ 4û0n

J2
0 (1 + Ŝbc)

]1/(d−4)

(141)

which becomes relevant above four dimensions. In addition
we have used the amplitude

ξ̂0 =
[
J0(1 + Ŝbc)/â0

]1/2
(142)

of the bulk correlation length ξ̂ ∼ ξ̂0t
−ν above Tc which

follows from (134, 52).

We see that P̂χ differs from Pχ, equation (126), not
only by a metric (overall) factor J0 (which would corre-
spond to the case 2 < d < 4) but exhibits a different struc-

ture. Now the quantity δ̂(x̂, ŷ) which plays the role of a
scaled temperature variable contains an ŷ-dependent shift,
in contrast to the constant shift of δ(x), equation (127).
It is this different structure which leads to the differ-
ent power laws of χc and χ̂c presented in reference [13]
and in the preceding section. The origin of this structural
difference is the different large-L behavior of ∆ and ∆̂,
equations (95, 96).
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The same conclusions hold for the order parametersM
and

M̂ = L[(γ/ν)−d]/2P̂M

(
t(L/ξ̂0)1/ν , (L/l̂0)4−d

)
. (143)

The scaling function of the latter is

P̂M (x̂, ŷ) =
[
P̂χ(x̂, ŷ)

]1/2
(144)

according to (42).
We conclude that although the field-theoretic ϕ4

model and ϕ4 lattice model exhibit the same kind of bulk
(mean field) critical behavior for d > 4 their finite-size
scaling functions differ significantly.

For comparison we finally present the scaling functions
P0χ and P̂0χ of the lowest-mode approach,

P0χ(x0, y0) = 2
{
x0 +

√
x2

0 + 4y0

}−1

, (145)

x0 = t(La
1/2
0 )1/ν , y0 = 4u0nL

4−d, (146)

and

P̂0χ(x̂0, ŷ0) = 2J−1
0

{
x̂0 +

√
x̂2

0 + 4ŷ0

}−1

, (147)

x̂0 = t(Lâ
1/2
0 J

−1/2
0 )1/ν , ŷ0 = 4û0nL

4−dJ−2
0 . (148)

We see that these functions appear to have the same
universal form for both the field-theoretic and the
lattice model, in disagreement with Pχ and P̂χ,
equations (126, 139).

6.3 Comparison with previous results for d > 4

In the following we comment on the previous exact solu-
tions of the n-vector model for n→∞ [5] and of the mean
spherical model [6,7] on finite lattices. These solutions do
not explicitly contain a variable parameter corresponding
to û0 in the ϕ4 lattice model whose effect can be studied
as a function of û0. Therefore it is difficult or even impos-
sible to interpret these solutions in the sense of the scaling
structure (119). The solution of reference [5] was only dis-
cussed in terms of the usual scaling form (79). This led to
the conclusion that usual finite-size scaling in the sense of
(79) does not hold for d > 4.

In reference [6] the solution for d > 4 was first dis-
cussed in terms of a single scaling variable tL2 which led
to Figure 7 with a non-scaling plot for d = 5. Then an at-
tempt was made to account for the effect of a dangerous
irrelevant variable by afterwards introducing a variable pa-
rameter u into the solution. This parameter corresponds
to our û0n. The resulting susceptibility χSR of Shapiro
and Rudnick [6] for this modified version of the spherical
model for d > 4 reads (see their Eqs. (114, 60))

χSR = L2
{
f
(
L2t̃, uL4−d

)}−1
, (149)

t̃ = t− K̃L2−d, (150)

where the amplitude

K̃ = Tc
[
A1 − 2(d− 2)−1(2πJ)−1

]
(151)

is a constant (see also Eqs. (47, 10) of Ref. [7]). The struc-
ture of the t and L dependence of χSR disagrees with
that of our χ̂. A disagreement exists also with regard to
the dependence on the coupling u. Our δr̂ (corresponding
to t̃) contains the coupling û0n in the second term on the

r.h.s. of (136), i.e., L2δr̂ = F (L2t, û0nL
4−d) whereas K̃ in

(151) is independent of u. Thus, L2t̃ = Φ(L2t, K̃L4−d) 6=
Ψ(L2t, uL4−d). The crucial consequence is that the struc-
ture of (149, 150) is incorrect since it does not have the
general finite-size scaling form (119) whose validity we
have proven for the ϕ4 lattice model for d > 4. We re-
call that the u dependence that should enter K̃ does not
have a dangerous irrelevant character since it originates
from the k 6= 0 modes, as demonstrated by our exact so-
lution χ̂ in (91) where ∆̂, equation (94), in the form of

equation (96) corresponds to the term K̃L2−d in (150). A
clear distinction between k = 0 and k 6= 0 modes has not
been made in the procedure of introducing u in Appendix
B of reference [6] which failed to introduce a u-dependence

into the amplitude K̃.
Finally we comment on the claim [6] that for d > 4

the finite spherical model and the lowest-mode approach
(“rounded mean field theory”[6]) yield identical predic-
tions near Tc. This statement is incorrect for the region
â0tL

2 > 0 (compare our Eqs. (102, 104)).

7 Discussion

We have studied the field-theoretic version and the lattice
version of the O(n) symmetric ϕ4 model in the large-n
limit for a d-dimensional hypercubic geometry with peri-
odic boundary conditions. Essential parts of our conclu-
sions will apply also to other geometries and will have an
important impact also on the case of a finite number of
components of the order parameter. Explicit results of this
kind have been presented recently [13] for n = 1 which can
be extended to n > 1 on the basis of reference [26]. Fur-
ther results are derived in reference [25]. We discuss the
following five aspects of our conclusions.

(i) We have shown on the basis of an analysis of leading
finite-size effects on the susceptibility, the order parame-
ter and the specific heat that lattice effects are important
above the upper critical dimension. The effect of the lat-
tice manifests itself not only in a change of nonuniversal
amplitudes (as expected) but also in a change of the ex-
ponents of the leading finite-size terms as compared to
the exponents of the field-theoretic description. This un-
expected feature has not been noticed previously in the
literature and is of importance from the point of view of
both statistical physics and continuum field theory.

(ii) Our results confirm that finite-size scaling in its
usual simple form does not hold for d > 4, as expected [5],
and that instead a generalized finite-size scaling form is
valid with two reference lengths. As an unexpected result
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we have found that the corresponding finite-size scaling
functions of the field-theoretic model are nonuniversal. In
particular, the scaling functions of the ϕ4 field theory and
of the ϕ4 lattice model differ significantly in structure. For
the ϕ4 lattice Hamiltonian Ĥ, in the large-n limit, the
finite-size scaling functions turn out to be independent of
the specific form of the lattice interaction; the latter en-
ters only the amplitude of the correlation length ξ̂0, equa-
tion (142), and the reference length l̂0, equation (141). It
remains to be seen whether this kind of restricted uni-
versality holds also for finite n [25]. Further studies with

different forms of Ĥ are needed to determine the class of
lattice models for which universal finite-size scaling func-
tions (in a restricted sense) exist above the upper critical
dimension.

(iii) Although previous arguments in support of the
asymptotic correctness of the lowest-mode approach for
d > 4 [17] have been widely accepted in the literature on
finite-size effects in statics [3,6,7,10,12,18,19,27–34] and
dynamics [19,35–39] we have shown that these arguments
are not generally valid. The lowest-mode approach takes
into account only homogeneous fluctuations [17] and pre-
dicts incorrect exponents for the leading finite-size effects
on the susceptibility, order-parameter and specific heat of
the field-theoretic model for d > 4. For the lattice model,
it fails for the leading finite-size terms of the susceptibil-
ity and order parameter above Tc, and of the specific heat
at Tc. Thus the inhomogeneous fluctuations play a more
important role above the upper critical dimension than
anticipated previously.

(iv) Our results have an impact on the interpretation of
Monte-Carlo simulations of spin models on finite lattices
above the upper critical dimension [18,30–33] We have
shown [13] that a description of these lattice systems in
terms of the field-theoretic Hamiltonian H, equation (1),
is not correct as far as finite-size effects are concerned, and
that instead a lattice Hamiltonian Ĥ should be employed.
It remains to be seen whether the previous asymptotic
values of certain ratios [17] can be justified on the basis
of a lattice Hamiltonian. In any case there remains the
problem of predicting the form of the non-asymptotic (fi-
nite L) corrections. Previous analyses [18,30–33] that are
based on the field-theoretic Hamiltonian H are not conclu-
sive in this respect. Detailed knowledge of the structure of
these corrections including the predictability of their am-
plitudes is of importance for the analysis of finite-size data
of Monte-Carlo simulations. It is not established whether
the form of the lattice Hamiltonian in (34) for n = 1
is appropriate and sufficient to explain the leading non-
asymptotic correction terms, e.g., of the Binder cumulant
of the five-dimensional Ising model.

(v) Although we have not yet discussed the more com-
plicated border-line case d = du we expect on the ba-
sis of our present results that lattice effects on the lead-
ing finite-size terms are non-negligible also for d = du
in that they will affect the amplitudes in a nontrivial
way (different from the cases d < du and d > du).
This may yield testable theoretical predictions and may
be of particular relevance near tricritical points whose

border-line dimension is du = 3. There may also be rele-
vant applications at du = 4 in models of elementary par-
ticle physics.

Finally we mention that it would be interesting to ex-
amine the crossover from the critical finite-size regime to
the regime of finite-size rounding near the coexistence line
below Tc where Goldstone modes govern the long-distance
properties [5,7,17,26].

We acknowledge support by Sonderforschungsbereich 341 der
Deutschen Forschungsgemeinschaft.

Appendix: Large L behavior of ∆

The quantity ∆, equation (90), can be written as

∆ = 4u0nΛ
d−2∆0 (A.1)

where

∆0(ΛL) = Λ2−d
[ ∫

k

k−2 − L−d
∑
k 6=0

k−2
]

(A.2)

is a dimensionless function that depends only on ΛL and
d. Using the dimensionless vektor k/Λ and the represen-
tation

(k/Λ)−2 =

∞∫
0

dx e−(k/Λ)2x =

∞∫
0

dx

d∏
j=1

[
e−(kj/Λ)2x

]
(A.3)

we obtain

∆0 =

∞∫
0

dx
[
S(∞, x)d − S(ΛL, x)d + (ΛL)−d

]
(A.4)

with

S(ΛL, x) = (ΛL)−1
∑
q

exp(−q2x) (A.5)

where the (one-dimensional) sum
∑
q runs over

q = 2πm/(ΛL) with m = 0,±1,±2, ... in the range
−1 ≤ q < 1. For ΛL→∞ we have

S(∞, x) =
1

2π

1∫
−1

dq exp(−q2x). (A.6)

In determining the large ΛL behavior of ∆0 it is important
to distinguish the regimes 0 ≤ x <

∼ ΛL and x >
∼ ΛL in the

integral representation of (A.4). Accordingly we split

∆0 = ∆1 +∆2 (A.7)

where

∆1 =

ΛL∫
0

dx
[
S(∞, x)d − S(ΛL, x)d + (ΛL)−d)

]
, (A.8)

∆2 =

∞∫
ΛL

dx
[
S(∞, x)d − S(ΛL, x)d + (ΛL)−d

]
. (A.9)
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First we derive the leading ΛL dependence of ∆2. By a
simple change of variables we rewrite ∆2 as

∆2 =
(ΛL)2−d

4π2

∞∫
y0

dy
{[
S̃(y, ΛL

√
y)
]d
−

[∑
m

e−ym
2

]d
+1
}

(A.10)

with y0 = 4π2/(ΛL) and

S̃(y, z) =
2
√
y

z/(2π)∫
0

exp(−t2)dt. (A.11)

The sum
∑
m in (A.10) runs over m = 0,±1,±2, ... in the

range −ΛL/(2π) ≤ m < ΛL/(2π). For y � y0/(ΛL) this
sum can be transformed as∑

m

e−ym
2

= K(y) +O(e−ΛLy/y0) (A.12)

with

K(y) =
∞∑

m=−∞

exp(−ym2). (A.13)

For y � y0/(ΛL) we can also simplify

S̃(y, ΛL
√
y) = (π/y)1/2 +O(y−1/2 e−ΛLy/y0). (A.14)

This leads to

∆2 =
(ΛL)2−d

4π2

∞∫
y0

dy
{(π

y

)d/2
− [K(y)]d + 1

+O
(
y−1/2eΛLy/y0

)}
. (A.15)

From Poisson’s summation formula we have [17]

K(y) = (π/y)1/2K(π2/y) (A.16)

= (π/y)1/2
[
1 +O

(
e−π

2/y
)]
, (A.17)

thus at y = y0 the integrand of (A.15) is

1 +O(y
−1/2
0 e−π

2/y0) +O(y
−1/2
0 e−ΛL) (A.18)

where the last two contributions remain negligible in the
limit y0 → 0 corresponding to ΛL→∞. This leads to the
large ΛL behavior

∆2 = (ΛL)2−d
[
a2(d) +O(e−ΛL)

]
− (ΛL)1−d (A.19)

with

a2(d) =
−1

4π2

∞∫
0

dy
[
K(y)d − (π/y)d/2 − 1

]
. (A.20)

In order to determine the leading ΛL dependence of ∆1

we first derive a representation of the one-dimensional in-
tegral

I(a, b) =

b∫
a

f(x)dx (A.21)

in terms of summations. We assume the arbitrary real
function f(x) of the real variable x to be well behaved
in the interval a ≤ x ≤ b, in particular we assume that
f(x) has a convergent Taylor expansion around any x in
this interval. We split the interval a ≤ x ≤ b into N
subintervals of length ∆x = (b−a)/N between the points
xi = a + i∆x, i = 0, 1, ..., N , with x0 = a, xN = b. The
integral I can be represented as

I(a, b) =
N−1∑
i=0

xi+1∫
xi

f(x)dx. (A.22)

For each interval we expand f(x) into a Taylor series

xi+1∫
xi

f(x)dx =

xi+1∫
xi

[
f(xi) +

∞∑
n=1

1

n!
f (n)(xi)(x− xi)

n

]
dx

(A.23)

= f(xi)∆x+
∞∑
n=1

1

(n+ 1)!
f (n)(xi)(∆x)n+1

(A.24)

where f (n)(x) ≡ dnf(x)/dxn. Thus we obtain

b∫
a

f(x)dx =
N−1∑
i=0

f(xi)∆x+
∞∑
n=1

(∆x)n

(n+ 1)!
I

(n)
N (a, b)

(A.25)

where

I
(n)
N (a, b) =

N−1∑
i=0

f (n)(xi)∆x. (A.26)

Since f(x) is an arbitrary function we may also apply
(A.25) to the function f ′(x) instead of f(x). This yields

an expression for I
(1)
N (a, b) in terms of higher derivatives,

I
(1)
N (a, b) = f(b)− f(a)−

∞∑
n=1

(∆x)n

(n+ 1)!
I

(n+1)
N (a, b),

(A.27)

which can be substituted into the n = 1 term of (A.25).
Successive application of this procedure permits one to
express the difference

b∫
a

f(x)dx−
N−1∑
i=0

f(xi)∆x ≡ RN (a, b) (A.28)
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in terms of the differences of the derivatives at a and b,

∆f (k) = f (k)(b)− f (k)(a). (A.29)

The result is

RN (a, b) =
∆x

2

[
f(b)− f(a)

]
−

(∆x)2

12
∆f (1)

+
(∆x)4

720
∆f (3) +O

(
(∆x)6

)
. (A.30)

The coefficients of the O
(
(∆x)3

)
and O

(
(∆x)5

)
terms

vanish. Since ∆x ∼ O(N−1) this representation is ex-
pected to converge rapidly for large N if ∆f (k) remains
sufficiently well-behaved for large k.

We apply (A.28–A.30) to the integral S(∞, x) in
(A.6) where the integration variables q plays the role
of x in (A.21–A.30). The sum corresponding to (A.26)
is S(ΛL, x), equation (A.5), with 2π/(ΛL) corresponding
to ∆x. We obtain

S(∞, x) = S(ΛL, x) +
2π

3
xe−x(ΛL)−2

+ (2π)3

(
1

30
x2 −

1

45
x3

)
e−x(ΛL)−4 +O

(
(ΛL)−6

)
.

(A.31)

Substitution into (A.8) and evaluating the integral over x
for large ΛL yields the leading terms

∆1 =a1(d)(ΛL)−2+(ΛL)1−d+O
(
(ΛL)−4, e−ΛL

)
(A.32)

where

a1(d) =
d

3(2π)d−2

∞∫
0

dx xe−x
[ 1∫
−1

dy e−y
2x
]d−1

. (A.33)

Together with (A.19) for ∆2 this leads to (95) for ∆ .
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